Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 793
Filtrar
1.
Bioelectrochemistry ; 157: 108665, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38342073

RESUMO

Acetobacter aceti is a microbe that produces corrosive organic acids, causing severe corrosion of industrial equipment. Previous studies have focused on the organic acid corrosion of A. aceti, but neglected the possibility that it has electron transfer corrosion. This study found that electron transfer and organic acids can synergistically promote the corrosion of 2205 duplex stainless steel (DSS). Electrochemical measurement results showed that corrosion of 2205 DSS was more severe in the presence of A. aceti. Surface analysis indicated a thick biofilm formed on the steel surface, with low pH and dissolved oxygen concentrations under the biofilm. Corrosion intensified when A. aceti lacked a carbon source, suggesting that A. aceti can corrode metals by using metallic substrates as electron donors, in addition to its acidic by-products.


Assuntos
Acetobacter , Elétrons , Aço Inoxidável , Corrosão , Transporte de Elétrons , Aço , Biofilmes , Compostos Orgânicos
2.
Food Res Int ; 177: 113919, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225120

RESUMO

Highland barley vinegar, as a solid-state fermentation-type vinegar emerged recently, is well-known in Qinghai-Tibet plateau area of China. This work aimed to explore the main physicochemical factors, key flavor volatile compounds, and dominate microorganisms of highland barley vinegar during fermentation. The results showed that the decrease trend of reducing sugar, pH and the increase trend of amino acid nitrogen were associated with the metabolism of dominate bacteria, especially Lactobacillus and Acetobacter. Totally, 35 volatile compounds mainly including 20 esters, 10 alcohols, 2 aldehydes, 1 ketone and 2 pyrazines and 7 organic acids were identified. Especially, isoamyl acetate, acetyl methyl carbinol, ethyl caprylate, 1,2-propanediol, 3-methyl-1-butanol and ethyl isovalerate with high odor activity values were confirmed as key aroma compounds. Meanwhile, the relative average abundance of bacteria at genus level decreased significantly as fermentation time goes on. Among these microbes, Lactobacillus were the dominate bacteria at alcohol fermentation stage, Lactobacillus and Acetobacter were dominate at acetic acid fermentation stage. Furthermore, the correlations between dominate bacteria and the key volatile compounds were revealed, which highlighted Lactobacillus and Acetobacter were significantly correlated with key volatile compounds (|r| > 0.5, P < 0.01). The fundings of this study provide insights into the flavor and assist to improve the production quality of highland barley vinegar.


Assuntos
Acetobacter , Hordeum , Ácido Acético/metabolismo , Fermentação , Álcoois/metabolismo , Bactérias/metabolismo , Acetobacter/metabolismo
3.
Mol Ecol ; 33(2): e17202, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37947376

RESUMO

Insects are rich in various microorganisms, which play diverse roles in affecting host biology. Although most Drosophila species prefer rotten fruits, the agricultural pest Drosophila suzukii attacks ripening fruits before they are harvested. We have reported that the microbiota has positive and negative impacts on the agricultural pest D. suzukii on nutrient-poor and -rich diets, respectively. On nutrient-poor diets, microbes provide protein to facilitate larval development. But how they impede D. suzukii development on nutrient-rich diets is unknown. Here we report that Acetobacter pomorum (Apo), a commensal bacterium in many Drosophila species and rotting fruit, has several detrimental effects in D. suzukii. Feeding D. suzukii larvae nutrient-rich diets containing live Apo significantly delayed larval development and reduced the body weight of emerged adults. Apo induced larval immune responses and downregulated genes of digestion and juvenile hormone metabolism. Knockdown of these genes in germ-free larvae reproduced Apo-like weakened phenotypes. Apo was confirmed to secrete substantial amounts of gluconic acid. Adding gluconic acid to the D. suzukii larval diet hindered larval growth and decreased adult body weight. Moreover, the dose of gluconic acid that adversely affected D. suzukii did not negatively affect Drosophila melanogaster, suggesting that D. suzukii is less tolerant to acid than D. melanogaster. Taken together, these findings indicate that D. suzukii is negatively affected by gluconic acid, which may explain why it prefers ripening fruit over Apo-rich rotting fruit. These results show an insect's tolerance to microbes can influence its ecological niche.


Assuntos
Acetobacter , Gluconatos , Microbiota , Animais , Drosophila , Drosophila melanogaster/genética , Acetobacter/genética , Frutas , Larva/microbiologia , Peso Corporal
4.
J Bacteriol ; 205(11): e0010123, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37930061

RESUMO

IMPORTANCE: Acetobacter pasteurianus, an industrial vinegar-producing strain, is suffered by fermentation stress such as fermentation heat and/or high concentrations of acetic acid. By an experimental evolution approach, we have obtained a stress-tolerant strain, exhibiting significantly increased growth and acetic acid fermentation ability at higher temperatures. In this study, we report that only the three gene mutations of ones accumulated during the adaptation process, ansP, dctD, and glnD, were sufficient to reproduce the increased thermotolerance of A. pasteurianus. These mutations resulted in cell envelope modification, including increased phospholipid and lipopolysaccharide synthesis, increased respiratory activity, and cell size reduction. The phenotypic changes may cooperatively work to make the adapted cell thermotolerant by enhancing cell surface integrity, nutrient or oxygen availability, and energy generation.


Assuntos
Acetobacter , Termotolerância , Ácido Acético/metabolismo , Acetobacter/genética , Acetobacter/metabolismo , Fermentação , Aminoácidos/metabolismo
5.
J Appl Microbiol ; 134(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37934610

RESUMO

AIMS: This study aimed to investigate the probiotic effects of Acetobacter pasteurianus BP2201, isolated from brewing mass, for the treatment of alcohol-induced learning and memory ability impairments in a Caenorhabditis elegans model. METHODS AND RESULTS: Acetobacter pasteurianus BP2201 was examined for probiotic properties, including acid and bile salt resistance, ethanol degradation, antioxidant efficacy, hemolytic activity, and susceptibility to antibiotics. The strain displayed robust acid and bile salt tolerance, efficient ethanol degradation, potent antioxidant activity, and susceptibility to specific antibiotics. Additionally, in the C. elegans model, administering A. pasteurianus BP2201 significantly improved alcohol-induced learning and memory impairments. CONCLUSIONS: Acetobacter pasteurianus BP2201 proves to be a promising candidate strain for the treatment of learning and memory impairments induced by alcohol intake.


Assuntos
Acetobacter , Caenorhabditis elegans , Animais , Ácido Acético/metabolismo , Acetobacter/metabolismo , Antioxidantes/metabolismo , Etanol/metabolismo , Antibacterianos/farmacologia
6.
Appl Environ Microbiol ; 89(10): e0016523, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37800920

RESUMO

Gut microbiota are fundamentally important for healthy function in animal hosts. Drosophila melanogaster is a powerful system for understanding host-microbiota interactions, with modulation of the microbiota inducing phenotypic changes that are conserved across animal taxa. Qualitative differences in diet, such as preservatives and dietary yeast batch variation, may affect fly health indirectly via microbiota, and may potentially have hitherto uncharacterized effects directly on the fly. These factors are rarely considered, controlled, and are not standardized among laboratories. Here, we show that the microbiota's impact on fly triacylglyceride (TAG) levels-a commonly-measured metabolic index-depends on both preservatives and yeast, and combinatorial interactions among the three variables. In studies of conventional, axenic, and gnotobiotic flies, we found that microbial impacts were apparent only on specific yeast-by-preservative conditions, with TAG levels determined by a tripartite interaction of the three experimental factors. When comparing axenic and conventional flies, we found that preservatives caused more variance in host TAG than microbiota status, and certain yeast-preservative combinations even reversed effects of microbiota on TAG. Preservatives had major effects in axenic flies, suggesting either direct effects on the fly or indirect effects via media. However, Acetobacter pomorum buffers the fly against this effect, despite the preservatives inhibiting growth, indicating that this bacterium benefits the host in the face of mutual environmental toxicity. Our results suggest that antimicrobial preservatives have major impacts on host TAG, and that microbiota modulates host TAG dependent on the combination of the dietary factors of preservative formula and yeast batch. IMPORTANCE Drosophila melanogaster is a premier model for microbiome science, which has greatly enhanced our understanding of the basic biology of host-microbe interactions. However, often overlooked factors such as dietary composition, including yeast batch variability and preservative formula, may confound data interpretation of experiments within the same lab and lead to different findings when comparing between labs. Our study supports this notion; we find that the microbiota does not alter host TAG levels independently. Rather, TAG is modulated by combinatorial effects of microbiota, yeast batch, and preservative formula. Specific preservatives increase TAG even in germ-free flies, showing that a commonplace procedure in fly husbandry alters metabolic physiology. This work serves as a cautionary tale that fly rearing methodology can mask or drive microbiota-dependent metabolic changes and also cause microbiota-independent changes.


Assuntos
Acetobacter , Microbioma Gastrointestinal , Animais , Drosophila , Microbioma Gastrointestinal/fisiologia , Drosophila melanogaster/microbiologia , Acetobacter/metabolismo , Dieta
7.
PLoS One ; 18(10): e0292585, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37824485

RESUMO

Lactobacilli and Acetobacter sp. are commercially important bacteria that often form communities in natural fermentations, including food preparations, spoilage, and in the digestive tract of the fruit fly Drosophila melanogaster. Communities of these bacteria are widespread and prolific, despite numerous strain-specific auxotrophies, suggesting they have evolved nutrient interdependencies that regulate their growth. The use of a chemically-defined medium (CDM) supporting the growth of both groups of bacteria would facilitate the identification of the molecular mechanisms for the metabolic interactions between them. While numerous CDMs have been developed that support specific strains of lactobacilli or Acetobacter, there has not been a medium formulated to support both genera. We developed such a medium, based on a previous CDM designed for growth of lactobacilli, by modifying the nutrient abundances to improve growth yield. We further simplified the medium by substituting casamino acids in place of individual amino acids and the standard Wolfe's vitamins and mineral stocks in place of individual vitamins and minerals, resulting in a reduction from 40 to 8 stock solutions. These stock solutions can be used to prepare several CDM formulations that support robust growth of numerous lactobacilli and Acetobacters. Here, we provide the composition and several examples of its use, which is important for tractability in dissecting the genetic and metabolic basis of natural bacterial species interactions.


Assuntos
Acetobacter , Animais , Acetobacter/genética , Lactobacillus/fisiologia , Drosophila melanogaster , Bactérias , Vitaminas/metabolismo
8.
Science ; 381(6655): eadg5725, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37471548

RESUMO

Antimicrobial peptides are host-encoded immune effectors that combat pathogens and shape the microbiome in plants and animals. However, little is known about how the host antimicrobial peptide repertoire is adapted to its microbiome. Here, we characterized the function and evolution of the Diptericin antimicrobial peptide family of Diptera. Using mutations affecting the two Diptericins (Dpt) of Drosophila melanogaster, we reveal the specific role of DptA for the pathogen Providencia rettgeri and DptB for the gut mutualist Acetobacter. The presence of DptA- or DptB-like genes across Diptera correlates with the presence of Providencia and Acetobacter in their environment. Moreover, DptA- and DptB-like sequences predict host resistance against infection by these bacteria across the genus Drosophila. Our study explains the evolutionary logic behind the bursts of rapid evolution of an antimicrobial peptide family and reveals how the host immune repertoire adapts to changing microbial environments.


Assuntos
Acetobacter , Peptídeos Antimicrobianos , Proteínas de Drosophila , Drosophila melanogaster , Interações Hospedeiro-Patógeno , Microbiota , Providencia , Animais , Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/metabolismo , Drosophila melanogaster/imunologia , Drosophila melanogaster/microbiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Evolução Molecular , Interações Hospedeiro-Patógeno/imunologia
9.
J Biomater Appl ; 38(1): 51-63, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37321600

RESUMO

Due to the growing importance of green chemistry, the search for alternatives to cellulose has begun, leading to the rediscovery of bacterial cellulose (BC). The material is produced by Gluconacetobacter and Acetobacter bacteria, mainly Komagataeibacter xylinus. It is a pure biopolymer, without lignin or hemicellulose, forming a three-dimensional mesh, showing much lower organization than its plant counterpart. Thanks to its design, it has proven itself in completely unprecedented applications - especially in the field of biomedical sciences. Coming in countless forms, it has found use in applications such as wound dressings, drug delivery systems, or tissue engineering. The review article focuses on discussing the main structural differences between plant and bacterial cellulose, methods of bacterial cellulose synthesis, and the latest trends in BC applications in biomedical sciences.


Assuntos
Acetobacter , Celulose , Celulose/química , Bactérias/química , Biopolímeros , Engenharia Tecidual , Acetobacter/química
10.
Microb Biotechnol ; 16(9): 1834-1857, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37354051

RESUMO

The excessive consumption of alcohol results in a dysbiosis of the gut microbiota, which subsequently impairs the gut microbiota-brain/liver axes and induces cognitive dysfunction and hepatic injury. This study aimed to investigate the potential effect of Acetobacter pasteurianus BP2201 in reducing the negative effects of alcohol consumption on cognitive function and liver health by modulating the gut microbiota-brain/liver axes. Treatment with A. pasteurianus BP2201 improved alcohol-induced hippocampal damage, suppressed neuroinflammation, promoted neuroprotein expression in the hippocampus and enhanced cognitive function. At the same time, A. pasteurianus BP2201 can also reduce serum lipid levels, relieve oxidative stress, inhibit TLR4/MyD88/NF-κB pathway, reduce the secretion of TNF-α and IL-1ß, so as to improve alcoholic liver injury. Concomitantly, the treatment with A. pasteurianus BP2201 leads to a shift in the intestinal microbiota structure towards that of healthy individuals, inhibiting the proliferation of harmful bacteria and promoting the recovery of beneficial bacteria. In addition, it also improves brain cognitive dysfunction and liver health by affecting the gut microbiota-brain/liver axes by promoting the synthesis of relevant amino acids and the metabolism of nucleotide base components. These findings demonstrate the potential of regulating the gut microbiome and gut microbiota-brain/liver axes to mitigate alcohol-induced disease.


Assuntos
Acetobacter , Microbioma Gastrointestinal , Camundongos , Animais , Fígado , Etanol/toxicidade , Etanol/metabolismo , Camundongos Endogâmicos C57BL , Disbiose
11.
Appl Biochem Biotechnol ; 195(10): 6003-6019, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36738389

RESUMO

Acetic acid bacteria have a remarkable capacity to cope with elevated concentrations of cytotoxic acetic acid in their fermentation environment. In particular, the high-level acetate tolerance of Acetobacter pasteurianus that occurs in vinegar industrial settings must be constantly selected for. However, the improved acetic acid tolerance is rapidly lost without a selection pressure. To understand genetic and molecular biology of this acquired acetic acid tolerance in A. pasteurianus, we evolved three strains A. pasteurianus CICIM B7003, CICIM B7003-02, and ATCC 33,445 over 960 generations (4 months) in two initial acetic acids of 20 g·L-1 and 30 g·L-1, respectively. An acetic acid-adapted strain M20 with significantly improved specific growth rate of 0.159 h-1 and acid productivity of 1.61 g·L-1·h-1 was obtained. Comparative genome analysis of six evolved strains revealed that the genetic variations of adaptation were mainly focused on lactate metabolism, membrane proteins, transcriptional regulators, transposases, replication, and repair system. Among of these, lactate dehydrogenase, acetolactate synthase, glycosyltransferase, ABC transporter ATP-binding protein, two-component regulatory systems, the type II toxin-antitoxin system (RelE/RelB/StbE), exodeoxyribonuclease III, type I restriction endonuclease, tRNA-uridine 2-sulfurtransferase, and transposase might collaboratively contribute to the improved acetic acid tolerance in A. pasteurianus strains. The balance between repair factors and transposition variations might be the basis for genomic plasticity of A. pasteurianus strains, allowing the survival of populations and their offspring in acetic acid stress fluctuations. These observations provide important insights into the nature of acquired acetic acid tolerance phenotype and lay a foundation for future genetic manipulation of these strains.


Assuntos
Ácido Acético , Acetobacter , Ácido Acético/metabolismo , Genômica , Fermentação , Acetobacter/metabolismo
12.
Food Chem ; 401: 134126, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36088714

RESUMO

To clarify the role of Acetobacter sp. in fermented noni juice, the physiochemical properties, main active ingredients and volatile constituents were comprehensively analyzed. The sugar content and acidity tended to be stable after 12 days of fermentation. Acetobacter sp. had no significant influence on major active ingredients of products. The headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) were performed to describe the characteristic flavor profiles during fermentation. A total of 55 flavor compounds were screened with odour threshold and Kruskal-Wallis p < 0.05. Among them, 14 different biomarkers were selected with Variable Importance in Projection (VIP) greater than 1. The concentrations of ketones and aldehydes increased significantly, mainly contributing to the floral, fruit and green features. The content of hexanoic acid, octanoic acid and butanoic acid as the main source of peculiar odor were significantly reduced, indicating Acetobacter sp. could improve the unpleasant odor of fermented noni juice.


Assuntos
Acetobacter , Morinda , Odorantes , Ácido Butírico , Cromatografia Gasosa-Espectrometria de Massas , Frutas/química , Açúcares/análise , Aldeídos/análise , Cetonas/análise
13.
Biotechnol Appl Biochem ; 70(3): 992-1000, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36385710

RESUMO

The current approach to gluconic acid production is acetification at 30°C, a temperature that can be difficult to maintain in tropical countries. This study investigated the production of gluconic acid during acetification by Acetobacter aceti WK at high temperatures. An acid-tolerant and thermotolerant species, A. aceti WK, was used for acetification at three different temperatures, namely, 30°C (normal temperature), 37°C, and 40°C (high temperature). Acetification was performed in a 100 L bioreactor with 0.15% CaCl2 for protection of the cells against high temperatures. The production of the organic acids, that is, acetic acid, gluconic acid, 2-keto gluconic acid, glucuronic acid, citric acid, succinic acid, lactic acid, and formic acid, was analyzed. Under acetification in the target total concentration of 80 g/L, the highest acetic acid content (39.3 g/L) was obtained at 37°C with an acetification rate of 0.3013 g/L/h, while the acetic acid content and acetification rate achieved at 30°C were 31 g/L and 0.3089 g/L/h, respectively. Additionally, gluconic acid presented at the highest concentration of 2.17 g/L. The rate of production of gluconic acid was 0.0169 g/L/h at 37°C. This acetification process at 37°C will be valuable as an alternative source for gluconic acid production for commercial applications.


Assuntos
Acetobacter , Temperatura , Fermentação , Ácido Acético
14.
J Biosci Bioeng ; 135(2): 109-117, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36509651

RESUMO

Sichuan sun vinegar (SSV) is a traditional Chinese vinegar with a unique flavor and it is fermented with bran as the main raw material. In the present study, we explored the bacterial community succession in fermented grains (Cupei) during SSV production. High-throughput sequencing results showed that bacterial community richness and diversity peaked on day 7 of fermentation. Lactobacillus and Acetobacter were the dominant bacteria throughout the fermentation process. However, Acetobacter, Cupriavidus, Sphingomonas, Pelomonas, and Lactobacillus were the most abundant genera in the late phase of fermentation on day 17. The boundaries of trilateral co-fermentation were determined through cluster analysis. Days 1-3 were considered the early fermentation stage (starch saccharification), days 5-11 were the middle fermentation stage (alcoholic fermentation), and days 13-17 represented the late fermentation stage (acetic acid fermentation). Changes in flavor compounds during Cupei fermentation were subsequently analyzed and a total of 86 volatile compounds, 9 organic acids, and 17 amino acids were detected. Although acetic acid, lactic acid, alcohols, and esters were the main metabolites, butyrate was also detected. Correlation analysis indicated that 20, 21, and 28 microorganisms were positively correlated with the abundance of amino acids, organic acids, and volatile flavor compounds, respectively. We further explored the microbial and metabolic mechanisms associated with the dominant volatile flavor compounds during SSV fermentation. Collectively, the findings of the current study provide detailed insights regarding the fermentation mechanisms of SSV, which may prove relevant for producing high-quality fermented products.


Assuntos
Ácido Acético , Acetobacter , Fermentação , Ácido Acético/metabolismo , Bactérias/metabolismo , Acetobacter/metabolismo , Lactobacillus/metabolismo , Aminoácidos/metabolismo
15.
Food Chem ; 404(Pt B): 134702, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36323039

RESUMO

Zhejiang Rosy Vinegar (ZRV) is a traditional condiment in Southeast China. This study aimed to track the physicochemical, microbiological, sensory changes, and metabolomic profiles of ZRV during fermentation and aging. The increase of acidity and decrease of reducing sugar were associated with the dominant growth of Lactobacillus and Acetobacter. The total 35 volatile compounds were identified in ZRV, mainly containing alcohols, esters, acids, aldehydes, ketones acids, phenols and nitrogen-containing. Compared to phenethyl acetate with sweet aroma in fresh vinegar, the compound with high odor activity values was isoamyl acetate with fruity aromas in aged vinegar. Furthermore, 1309 types of non-volatile components were identified, and histidine metabolism and arginine biosynthesis were revealed as main pathways during fermenting and aging. Concurrently, various bioactive substances in ZRV were identified. This study enriched the knowledge on the components and flavor of ZRV, and assist to improve the production quality of vinegar.


Assuntos
Acetobacter , Compostos Orgânicos Voláteis , Ácido Acético/química , Fermentação , Compostos Orgânicos Voláteis/metabolismo , Acetobacter/metabolismo , Odorantes
16.
J Bacteriol ; 204(7): e0004122, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35695500

RESUMO

Acetobacter species are a major component of the gut microbiome of the fruit fly Drosophila melanogaster, a widely used model organism. While a range of studies have illuminated impacts of Acetobacter on their hosts, less is known about how association with the host impacts bacteria. A previous study identified that a purine salvage locus was commonly found in Acetobacter associated with Drosophila. In this study, we sought to verify the functions of predicted purine salvage genes in Acetobacter fabarum DsW_054 and to test the hypothesis that these bacteria can utilize host metabolites as a sole source of nitrogen. Targeted gene deletion and complementation experiments confirmed that genes encoding xanthine dehydrogenase (xdhB), urate hydroxylase (urhA), and allantoinase (puuE) were required for growth on their respective substrates as the sole source of nitrogen. Utilization of urate by Acetobacter is significant because this substrate is the major nitrogenous waste product of Drosophila, and its accumulation in the excretory system is detrimental to both flies and humans. The potential significance of our findings for host purine homeostasis and health are discussed, as are the implications for interactions among microbiota members, which differ in their capacity to utilize host metabolites for nitrogen. IMPORTANCEAcetobacter are commonly found in the gut microbiota of fruit flies, including Drosophila melanogaster. We evaluated the function of purine salvage genes in Acetobacter fabarum to test the hypothesis that this bacterium can utilize host metabolites as a source of nitrogen. Our results identify functions for three genes required for growth on urate, a major host waste product. The utilization of this and other Drosophila metabolites by gut bacteria may play a role in their survival in the host environment. Future research into how microbial metabolism impacts host purine homeostasis may lead to therapies because urate accumulation in the excretory system is detrimental to flies and humans.


Assuntos
Acetobacter , Acetobacter/genética , Animais , Bactérias , Drosophila melanogaster/microbiologia , Humanos , Nitrogênio/metabolismo , Ácido Úrico/metabolismo , Resíduos
17.
J Biotechnol ; 350: 24-30, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35390361

RESUMO

Acetobacter pasteurianus is an excellent cell factory for production of highly-strength acetic acid, and attracts an increasing attention in metabolic engineering. However, the available well-characterized constitutive and inducible promoters are rather limited to adjust metabolic fluxes in A. pasteurianus. In this study, we screened a panel of constitutive and acid stress-driven promoters based on time-series of RNA-seq data and characterized in A. pasteurianus and Escherichia coli. Nine constitutive promoters ranged in strength from 1.7-fold to 100-fold that of the well-known strong promoter Padh under non-acetic acid environment. Subsequently, an acetic acid-stable red fluorescent visual reporting system was established and applied to evaluate acid stress-driven promoter in A. pasteurianus during highly-acidic fermentation environment. PgroES was identified as acid stress-driven strong promoters, with expression outputs varied from 100% to 200% when acetic acid treatment. To assess their application potential, ultra-strong constitutive promoter Ptuf and acid stress-driven strong promoter PgroES were selected to overexpress acetyl-CoA synthase and greatly improved acetic acid tolerance. Notably, the acid stress-driven promoter displayed more favorable for regulating strain robustness against acid stress by overexpressing tolerance gene. In summary, this is the first well-characterized constitutive and acid stress-driven promoter library from A. pasteurianus, which could be used as a promising toolbox for metabolic engineering in acetic acid bacteria and other gram-negative bacteria.


Assuntos
Ácido Acético , Acetobacter , Ácido Acético/metabolismo , Acetobacter/genética , Acetobacter/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Engenharia Metabólica
18.
Food Res Int ; 152: 110900, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35181076

RESUMO

Microbial ecosystems of fermented foods are largely interfered by human activities in myriad ways. The aim of this study was to illuminate the impacts of various starters and environmental variables on the fermentation process of Zhenjiang aromatic vinegar (ZAV), one of the four representative cereal vinegars in China. The effects of environmental variables (e.g., ethanol, total acidity, temperature) and starters (e.g., jiuqu, maiqu, seed pei) on the profiles of microbiome and metabolome (e.g., organic acids, amino acids and volatiles) during fermentation process of ZAV were analyzed. Amongst the four fermentation stages, acetic acid fermentation was the main stage for the accumulation of flavor substances, and subsequently, the contents of acids (mainly acetic, lactic and citric acids) and volatile metabolites (e.g., 2,3-butanedione, acetoin, etc.) continued to enrich in sealed fermentation stage. Principal coordinate analysis (PCoA) and analysis of similarities (ANOSIM) showed that the fungal and bacterial community structures of four fermentation stages were significantly different. As for bacterial community, the dominant OTUs with average relative abundance over 10% in at least one fermentation stage were assigned to the genera Acetilactobacillus, Acetobacter, Acinetobacter, Aeromonas, Lactobacillus, and Pseudomonas. The dominant fungal populations in each fermentation stage were obviously divergent, including Wickerhamomyces, Saccharomyces, Alternaria, Fusarium, etc. SourceTracker analysis demonstrated that jiuqu and seed pei provided microorganisms to initiate starch saccharification and acetic acid fermentation stages, respectively, and maiqu was mainly the donor of enzymes in alcohol fermentation. Spearman correlation coefficients revealed positive relationships between fungal community and various flavor metabolites, indicating the essential role of fungi in the flavor formation of ZAV. This study systematically reveals the effects of fermentation starters and environmental variables on vinegar production and deepens the understanding of the traditional production craft.


Assuntos
Acetobacter , Microbiota , Ácido Acético/metabolismo , Acetobacter/metabolismo , Bactérias , Fermentação , Humanos
19.
J Appl Microbiol ; 132(6): 4130-4149, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35182093

RESUMO

It has been more than a decade since Acetobacter senegalensis was isolated, identified and described as a thermotolerant strain of acetic acid bacteria. It was isolated from mango fruits in Senegal and used for industrial vinegar production in developing countries, mainly in sub-Saharan Africa. The strain was tested during several spirit vinegar fermentation processes at relatively high temperatures in accordance with African acclimation. The upstream fermentation process had significant stress factors, which are highlighted in this review so that the fermentation process can be better controlled. Due to its high industrial potential, this strain was extensively investigated by diverse industrial microbiologists worldwide; they concentrated on its microbiological, physiological and genomic features. A research group based in Belgium proposed an important project for the investigation of the whole-genome sequence of A. senegalensis. It would use a 454-pyrosequencing technique to determine and corroborate features that could give this strain significant diverse bio-industrial applications. For instance, its application in cocoa bean fermentation has made it a more suitable acetic acid bacterium for the making of chocolate than Acetobacter pasteurianus. Therefore, in this paper, we present a review that summarizes the current research on A. senegalensis at its microbial and genomic levels and also its specific bio-industrial applications, which can provide economic opportunities for African agribusiness. This review summarizes the physiological and genomic characteristics of Acetobacter senegalensis, a thermotolerant strain isolated from mango fruits and intended to be used in industrial vinegar fermentation processes. It also explores other bio-industrial applications such as cocoa fermentation. Vinegar fermentation is usually performed with mesophilic strains in temperate regions of the world. Developing countries, such as Senegal, import vinegar or make 'fake' vinegar by diluting acetic acid obtained from petrochemicals. The use of a thermotolerant Acetobacter senegalensis strain as a solid functional starter culture, as well as the design of a new adapted bioreactor, has significantly contributed to food security and the creation of small- to medium-sized enterprises that produce mango vinegar in West Africa.


Assuntos
Acetobacter , Cacau , Mangifera , Aclimatação , Ácido Acético , Acetobacter/genética , Cacau/microbiologia , Fermentação , Frutas/microbiologia
20.
J Biosci Bioeng ; 133(4): 375-381, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35125299

RESUMO

The constituents of fermentation foods vary seasonally and the microbiota plays a crucial role in metabolites formation. Here, the diversity and succession of microbiota of Shanxi mature vinegar produced with solid-solid fermentation craft have been investigated by Illumina Hiseq sequencing in both summer and winter. Obvious differences were observed in the structure of microbiota between summer and winter, and the bacterial community showed a significant difference (P < 0.05). Alpha diversity analysis showed that the diversity and richness of bacterial community were basically higher than that of fungal community in both summer and winter. For bacterial community, Lactobacillus and Limosilactobacillus were the two major group bacteria in the fermentation process of Shanxi mature vinegar in summer, and they dominated in acetic acid fermentation and alcoholic fermentation stages, respectively. Lactobacillus and Acetobacter were the two major group bacteria during the fermentation of Shanxi mature vinegar in winter. Saccharomyces, Saccharomycopsis, and Issatchenkia were the main yeasts in both seasons, while the dominant mould was Rhizopus in summer and Monascus in winter, respectively. The diversity of yeasts and moulds in winter was far greater than that in summer, especially in alcoholic fermentation stage. Collectively, our work revealed critical insights into effect of seasonal variation on the structure of microbiota of Shanxi mature vinegar, and was relevant in understanding the relationships between environmental change and microbiota.


Assuntos
Acetobacter , Microbiota , Ácido Acético/metabolismo , Acetobacter/genética , Acetobacter/metabolismo , Fermentação , Microbiota/genética , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...